Centre No.			Paper Reference			Surname	Initial(s)				
Candidate No.			6	6	7	8	/	0	1	Signature	

Paper Reference(s)

6678/01

Edexcel GCE

Mechanics M2

Advanced/Advanced Subsidiary

Friday 25 January 2013 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination
Mathematical Formulae (Pink)Items included with question papers
Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

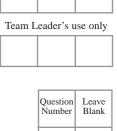
Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 7 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates


You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy.

©2013 Pearson Education Ltd.

P41480A w850/R6678/57570 5/5/5/5/6/

Examiner's use only

Turn over

Total

1.	Two uniform rods AB and BC are rigidly joined at B so that $\angle ABC = 90^{\circ}$. Rod AB length 0.5 m and mass 2 kg. Rod BC has length 2 m and mass 3 kg. The centre of mass the framework of the two rods is at G .	has	blan
	(a) Find the distance of G from BC.		
		(2)	
	The distance of G from AB is 0.6 m. The framework is suspended from A and hangs freely in equilibrium.		
	(b) Find the angle between AB and the downward vertical at A .	(3)	

		Leave
2.	A lorry of mass 1800 kg travels along a straight horizontal road. The lorry's engine is working at a constant rate of 30 kW. When the lorry's speed is 20 m s ⁻¹ , its acceleration is 0.4 m s^{-2} . The magnitude of the resistance to the motion of the lorry is R newtons.	ofank
	(a) Find the value of <i>R</i> .	
	(4)	
	The lorry now travels up a straight road which is inclined at an angle α to the horizontal, where $\sin \alpha = \frac{1}{12}$. The magnitude of the non-gravitational resistance to motion is R newtons. The lorry travels at a constant speed of 20 m s ⁻¹ .	
	(b) Find the new rate of working of the lorry's engine. (5)	

	Lea blar
Question 2 continued	

Leave blank

3.

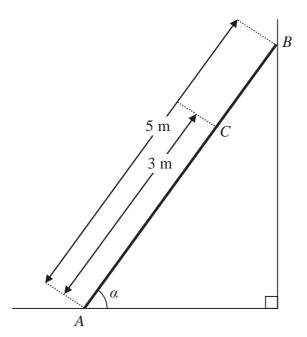


Figure 1

A ladder, of length 5 m and mass 18 kg, has one end A resting on rough horizontal ground and its other end B resting against a smooth vertical wall. The ladder lies in a vertical plane perpendicular to the wall and makes an angle α with the horizontal ground, where $\tan \alpha = \frac{4}{3}$, as shown in Figure 1. The coefficient of friction between the ladder and the ground is μ . A woman of mass 60 kg stands on the ladder at the point C, where AC = 3 m. The ladder is on the point of slipping. The ladder is modelled as a uniform rod and the woman as a particle.

Find the value of μ .							
	(9)						

Question 3 continued	

Leave

4.	At time t seconds the velocity of a particle P is $[(4t-5)\mathbf{i}+3\mathbf{j}]$ m s ⁻¹ . When $t=0$, to position vector of P is $(2\mathbf{i}+5\mathbf{j})$ m, relative to a fixed origin O .	he
	(a) Find the value of t when the velocity of P is parallel to the vector \mathbf{j} .	1)
	(b) Find an expression for the position vector of P at time t seconds.	4)
	A second particle Q moves with constant velocity $(-2\mathbf{i} + c\mathbf{j})$ m s ⁻¹ . When $t = 0$, to position vector of Q is $(11\mathbf{i} + 2\mathbf{j})$ m. The particles P and Q collide at the point with position vector $(d\mathbf{i} + 14\mathbf{j})$ m.	
	(c) Find	
	(i) the value of c ,	
	(ii) the value of d .	5)
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

estion 4 continued		

January 2013

Leave blank

5.	The point A lies on a rough plane inclined at an angle θ to the horizontal, where $\sin \theta = \frac{24}{25}$.	blank
	A particle P is projected from A , up a line of greatest slope of the plane, with speed	
	$U \text{ m s}^{-1}$. The mass of P is 2 kg and the coefficient of friction between P and the	
	plane is $\frac{5}{12}$. The particle comes to instantaneous rest at the point B on the plane,	
	where $AB = 1.5$ m. It then moves back down the plane to A.	
	(a) Find the work done against friction as <i>P</i> moves from <i>A</i> to <i>B</i> .	
	(a) This the work done against friction as F moves from A to B.	
	(b) Use the work-energy principle to find the value of U .	
	(4)	
	(c) Find the speed of <i>P</i> when it returns to <i>A</i> .	
	(3)	

	Leav blanl
Question 5 continued	

Leave blank

6.

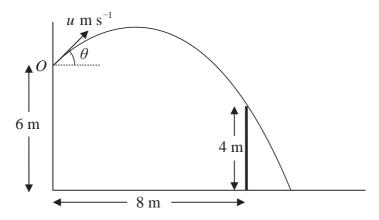


Figure 2

A ball is thrown from a point O, which is 6 m above horizontal ground. The ball is projected with speed u m s⁻¹ at an angle θ above the horizontal. There is a thin vertical post which is 4 m high and 8 m horizontally away from the vertical through O, as shown in Figure 2. The ball passes just above the top of the post 2 s after projection. The ball is modelled as a particle.

(a) Show that $\tan \theta = 2.2$

(5)

(b) Find the value of *u*.

(2)

The ball hits the ground T seconds after projection.

(c) Find the value of T.

(3)

Immediately before the ball hits the ground the direction of motion of the ball makes an angle α with the horizontal.

(d) Find α .

(5)

uestion 6 continued	

January 2013

Leave

7.	A particle A of mass m is moving with speed u on a smooth horizontal floor when it collides directly with another particle B , of mass $3m$, which is at rest on the floor. The coefficient of restitution between the particles is e . The direction of motion of A is reversed by the collision.					
	(a) Find, in terms of e and u ,					
	(i) the speed of A immediately after the collision,					
	(ii) the speed of B immediately after the collision. (7)					
	After being struck by A the particle B collides directly with another particle C , of mass $4m$, which is at rest on the floor. The coefficient of restitution between B and C is $2e$. Given that the direction of motion of B is reversed by this collision,					
	(b) find the range of possible values of e , (6)					
	(c) determine whether there will be a second collision between A and B . (3)					

